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Abstract

Quantification of the isotopic composition of uranium in urine at low levels of concentration is 

important for assessing both military and civilian populations’ exposures to uranium. However, 

until now there has been no convenient, precise method established for rapid determination of 

multiple uranium isotope ratios. Here we report a new method to measure 234U/238U, 235U/238U 

and 236U/238U. It uses solid phase chelation extraction (via TRU columns) of actinides from the 

urine matrix, followed by measurement using a magnetic sector field inductively coupled plasma 

mass spectrometer (SF-ICP-MS - Thermo Element XR) equipped with a high efficiency nebulizer 

(Apex PFA microflow) and coupled with a membrane desolvating introduction system (Aridus 

II™). This method provides rapid and reliable results, and has been used successfully to analyze 

Certified Reference Materials (CRM).

Introduction

Uranium is a radioactive element naturally present in the environment from very low to high 

concentrations. CDC’s National Health and Nutrition Examination Survey (NHANES) has 

historically monitored exposure of the US population to uranium through measurements of 

total uranium in urine using inductively coupled plasma mass spectrometry (ICP-MS).
1, 2

Various studies indicate that military personnel who were exposed to aerosols of depleted 

uranium (DU) exhibit no clinically significant uranium related health effects.
3–5

 However, 

the epidemiology community needs further experimental data to evaluate and assess the 

adverse health effects after chronic exposure to DU, because long-term effects that might 

result in cancer and birth defects remain unknown,
6, 7 and because of increased possibility of 

military and civilian personnel being exposed to DU and enriched uranium (EU) during 

military conflicts and radiological/nuclear terrorist attacks. Because of differences in 

analytical sensitivities for, and specific activities of, the various isotopes of uranium, 

monitoring total urine uranium concentrations, though a powerful biological indicator for 

uranium exposure, is not sufficient. Therefore, if total uranium concentration exceeds the 

pertinent limit, the need to more closely monitor radiological contamination of these people 
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requires isotopic analyses. For reference, the unweighted, non-creatinine corrected 95th 

percentile concentration of total uranium in urine from the NHANES 2009–2010 cycle is 

0.036 µg/L,
1
 and the Nuclear Regulatory Commission recommends intervention if a uranium 

worker has a urine uranium concentration greater than 15 µg/L.
8

Measurable individual levels of uranium reflect sums of recent and accumulated exposures, 

including those from various sources of natural uranium (NU), and possibly from DU and 

EU exposures. Urine uranium analysis is the least invasive approach to assess such 

exposures. EU is a critical component of the fuel in many nuclear reactors and nuclear 

weapons. It is a class of uranium in which the percent composition of 235U is enriched to 

within the range of 0.9% to 85% or more through the process of isotope separation. DU, on 

the other hand, is a by-product of this enrichment process. The DU used for military 

purposes has a rather constant 235U/238U isotopic ratio of 0.002, compared to 0.00725 for 

natural uranium, and a 234U/238U isotopic ratio of 0.00001, compared to 0.000055 for 

natural uranium. The presence of 236U in DU or EU is not universal; it may be introduced 

into the manufacturing process by recycling of spent fuel from plutonium production. 

Depending on manufacturing history, 236U could be an indicator of the presence of DU or 

EU, but it should not generally be used for this purpose.
14

 In any case, the DU used by U.S. 

Forces shows a rather constant 236U/238U isotopic ratio of 0.00003, compared to < 10−10 for 

natural uranium.
9–13

Several advanced instrumental techniques are available for isotope ratio measurements. 

Geological scientists consider Thermal Ionization Mass Spectroscopy (TIMS) and Multi-

Collector (MC) ICP-MS to be the ultimate tools for U isotope ratios determination since 

they provide the most precise results.
15–18

 Health physics’ lower precision measurement 

requirements make SF-ICP-MS the standard accepted method for uranium isotope ratios 

analysis in this discipline.
17,18

 SF-ICP-MS is a sensitive, multi-element technique that 

provides an efficient approach to biomonitoring multiple metals in complex, large scale 

biological matrices. However, significant challenges, including polyatomic interferences, 

matrix effects and low sensitivity for ultra-low concentrations are common for urine uranium 

isotope ratio analyses by SF-ICP-MS.
19, 20

 CDC has published methods designed to address 

some of these problems and improve urine uranium isotope ratio (for 235U/238U ) analysis 

accuracy at low concentrations in urine.
20, 21

 However, rapid and reliable determination 

of 234U/238U and 236U/238U in urine samples still remains challenging, as the 234U and 236U 

isotopes have very low abundance relative to 235U and 238U.

This study aimed to develop, characterize and validate a new SF-ICP-MS method for 

uranium isotope ratio analysis to achieve rapid and accurate quantification of uranium 

isotope ratios of 234U/238U, 235U/238U and 236U/238U in one practical method.

Experimental

Reagents and solutions

Prepare all nitric (HNO3) and hydrofluoric (HF) acid solutions from double distilled acids 

(GFS Chemicals Inc. Columbus, OH). Use water deionized to ≥18 mΩ·cm for all solutions 

(e.g., as produced by an Aqua Solutions Ultrapure Water System - Aqua Solutions, Inc., 
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Jasper, GA). Collect contributions for base urine pools from healthy volunteers with 

measured total urine uranium concentrations of < 5 ng /L, and acidify them to 1% v/v 

HNO3. Prepare natural uranium QC solutions by spiking base urine with dilutions of a 

uranium standard, (SPEX Industries, Inc., Edison, NJ) traceable to the National Institute of 

Standards and Technology (NIST, Gaithersburg, MD, USA). Prepare aqueous CRM 

solutions by dissolution of uranium oxide CRMs in powder or pellet form.
22

 Prepare low 

uranium ratio QC solutions by spiking base urine with dilutions of CRM NBL U005-A, 

NBL 115 (U.S. Department of Energy, New Brunswick Laboratory, Argonne, IL) and a 

mixture of natural uranium and NBL U005-A. Prepare high uranium ratio QC solutions by 

spiking base urine with dilutions of CRM NBL U015 (U.S. Department of Energy, New 

Brunswick Laboratory, Argonne, IL) and mixture of natural uranium and NBL U015.

Sample preparation

The optimum urine sample volume is 2 mL unless the total uranium concentration is greater 

than 300 ng/L or less than 100 ng/L. For samples with uranium concentrations higher than 

300 ng/L, use 1 mL (or less, depending on the uranium concentration) of the sample, diluted 

to ~ 200 ng/L for analysis. Use 4 mL or more of the sample, as appropriate, if the total 

uranium concentration is less than 100 ng/L. Acidify urine sample by adding 375 µL 

concentrated HNO3 per mL of (diluted, if appropriate) urine sample using 4 mL polystyrene 

sample cups (VMR, Suwanee, GA) prewashed with 5% v/v HNO3. Pour the contents into 

individual 0.22g TRU resin (Eichrom, Darien, IL) solid phase extraction columns, 

previously washed extensively with ≥18 mΩ·cm water , 10% v/v HNO3 (30 mL) and 5% v/v 

HF (30 mL × 2) and equilibrated with 10% v/v HNO3 (5 – 6 mL). Next wash each column 

with two to five mL 10% v/v HNO3, pouring each wash through the column, followed by 

two 5 mL 10% v/v HNO3 column washes to force unretained ions through each column. 

Elute the uranium from the samples into acid-cleaned 4 mL polystyrene conical bottom 

sample cups (Thermo-Fisher Scientific, Suwanee, GA) with 2 mL 5% v/v HF, or 

proportionately higher volumes for dilution purposes. The reagent blank for this method is 

5% v/v HF (Figure 1).

Instrumentation

This method measures Uranium isotope ratios using an extended dynamic range high 

resolution ICP-MS model Element XR (Thermo Fisher Scientific, Bremen, Germany), 

which is a double focusing magnetic sector field inductively-coupled-plasma mass 

spectrometer with a high performance, discrete dynode, dual mode secondary electron 

multiplier detector and a high current (for percent level content) faraday detector (Mascom, 

Bremen, Germany). It uses the ICP-MS, equipped with nickel sampler and skimmer cones 

and a CD-2 guard electrode, in triple mode. The sample introduction system consists of a 

computer controlled ASX-112 (Cetac, Omaha, NE) autosampler and Aridus II™ (Cetac, 

Omaha, NE) desolvation unit. Samples self-aspirate from the autosampler into the 

desolvation unit through an Apex perfluoroalkoxy (PFA) 100 µL/minute nebulizer (ESI, 

Omaha, NE, or equivalent). Sample desolvation occurs within the AridusII™ unit in a PFA 

spray chamber (Cetac, Omaha, NE) set at 110 °C. With the aid of argon sweep gas and 

nitrogen gas for sensitivity enhancement, the sample passes through a semi-permeable 

membrane coil set at 160°C. Optimize flow rates as needed, with argon sweep gas at ~ 2–7 
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L/min and nitrogen gas at ~ 3–9 mL/min. The desolvated sample exits the desolvating unit 

into a 1.8 mm I.D. sapphire injector and a standard quartz torch, and then into the mass 

spectrometer.

Optimization of the SF-ICP-MS measurement procedure

Some method parameters are crucial for the precision of uranium isotope ratios 

determination by SF-ICP-MS. Table 1 reflects optimized method parameters, including 

numbers of method passes, runs and samples based on the precision of the measurement of 

uranium isotope ratios. Further, the method requires the performance of individual run 

experimental parameter optimizations with respect to maximum ion intensity of 238U and 

minimum uranium oxide formation rate using a tuning solution containing natural uranium. 

Table 1 also contains summary examples of these optimized operating conditions.

Results and discussion

Sample recovery

The sample separation protocol uses solid phase chelation extraction (SPE), with TRU 

columns for separation of the actinides from the urine matrix, which is a modification of 

previously published methods for determination of uranium isotope ratios in urine.
20, 21, 23 

Because the Aridus II™ demonstrates exceptional signal stability, and in order to avoid 

introduction of interference or contamination into the samples, this method uses no tracer (or 

internal standard). SPE separation recovery is evaluated by analyzing the spiked internal 

quality control material both before and after running the sample material through the 

columns. The recoveries are acceptable, at approximately 90% to 104%. We use a 5% v/v 

HF solution as the reagent and instrument blank for this method since it is the sample matrix 

introduced to the ICP/MS, and the results obtained for blank samples (2 mL of water), which 

underwent exactly the same chemical separation procedure as the urine samples, showed 

very similar cps to 5% v/v HF.

Improvement in sensitivity using the Aridus II™

Sensitivity requirements for 234U and 236U are extremely stringent, and this limits the utility 

of SF-ICP-MS measurements. In order to determine possible improvement of instrumental 

sensitivity by use of an Aridus II™, we analyzed a 5 ng/L tuning solution which contained 

natural uranium. The Aridus II™ sensitivity for uranium is approximately 10 times higher 

than that of a Meinhard® quartz nebulizer (Type TQ-30–43) and the quartz cyclonic spray 

chamber (~3.0 × 105 cps/ppt versus 3.0 × 104 cps/(ng/L). The acid trap bottle (1M NaOH), 

connected to the sweep gas output line of the Aridus II™, affects the back pressure of the 

instrument’s introduction system, and has a significant effect on instrument sensitivity. The 

position of this gas line under the surface of the NaOH solution is very important and must 

be checked/optimized for best instrument performance.

SEM “Triple” mode used

Previous CDC methods, 
20, 21

 in which the target 238U eluent concentration from the TRU 

column is ~ 40 ng/L, use one detection mode (Secondary Electron Multiplier, or SEM, in 

counting mode) for the 235U/238U isotope ratio measurement.
20, 21

 For this method, we 
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increased the target 238U eluent concentration from the TRU column to ~200 ng/L because 

of the extremely different isotopic abundances among 234U, 235U, 236U, and 238U. Thus, the 

“counting mode only” method, with its limited dynamic range, is no longer practical. This 

method uses the “Triple” mode, where both SEM Counting and Analog detection modes are 

used, to perform the analysis. Counting mode is used for the low abundance 234U, 235U 

and 236U isotopes and analog mode is used for 238U. It is important to run a short, separate 

method before each batch of analysis with 238U at about 2 to 4 million cps in “Triple” mode 

for >10 scans, which updates the analog conversion factor (ACF), i.e., the factor between 

SEM counting and analog detection modes (for cross calibration between modes). Optimal 

samples per peak for this method is 600, and 1% of the Mass Window (see Table1) is used to 

avoid continuous automatic ACF updates for all analyses.

Abundance sensitivity correction

The abundance sensitivity of the instrument is critically important for the 236U/238U 

measurement since 236U is present only in very small proportion relative to 238U. The 

abundance sensitivity during the experiments was 2.3 × 10−6, which was calculated by 

averaging the measured 236U/238U ratio of the spiked natural uranium internal quality 

control material during the QC characterization of this method. 236U/238U ratio results for 

all samples in this method are mathematically corrected for abundance sensitivity.

The contribution of 235UH to the 236U signal

The Aridus II™ desolvating system reduces the contribution of 235U1H to the 236U signal. 

We used the signal at mass M = 239 (due to 238U1H+) to estimate the significance of any 

remaining 235U1H+ contribution to the 236U signal at mass M = 236. Our experiments 

showed that this hydride contribution to the 239U/238U signal, with an average value of 1.2 × 

10−5, is equivalent to < 1 × 10−7 for the analytically more important 236U/238U ratio, and can 

therefore be ignored for this method.

Linearity range

CDC’s procedures require investigation of the uranium isotope ratios in patient urine 

samples when the study protocol calls for it, or if a urine specimen is determined to have an 

‘elevated’ total uranium concentration. For this method, based on the known 238U 

concentration in the urine sample determined by the other available methods, the volume of 

urine sample loading on the TRU column is determined to target the uranium concentration 

of the column eluent at approximately 200 ng/L (as is, diluted or pre-concentrated). Thus, 

the linearity range requirement is not critical as long as the total U concentration is < 300 

ng/L. However, we tested the linearity range using aqueous solutions of CRM NBL U005-A, 

with total uranium concentrations ranging from 5 ng/L to 400 ng/L, and calculated the 

corresponding concentrations of 234U, 235U, 236U and 238U based on the certified uranium 

isotope ratios of NBL U005-A for comparison. The results are summarized in Figure 2.

Precision and accuracy

We performed analyses of aqueous CRM solutions from the U. S. Department of Energy’s 

New Brunswick Laboratory, and the observed uranium isotope ratios were in good 
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agreement with the certified values. Table 2 shows this, along with the typical precision 

observed at low, medium and high ratios of daily quality control materials that were 

analyzed at the beginning, in the middle and at the end of each analytical run.

Limit of Detection

The method was best optimized for a total uranium concentration between 100 ng/L and 300 

ng/L. Limit of detection (LOD) determination is not critical for this method since it is 

generally intended for ratio determination in samples with relatively high (> ~200 ng/L) total 

uranium content, and because ratios present are of concern across a defined, detectable range 

(~0.2–95% for 235U/238U). However, in order to confirm the concentration range for which 

reliable uranium isotope ratios may be determined, we prepared three urine pools with lower 

concentrations (spiked with CRM NBL U005-A, at 50 ng/L, 100 ng/L and 150 ng/L of total 

uranium) than that of the target total uranium concentration (200 ng/L) and analyzed these 

samples during the internal quality control materials’ characterization procedure. Analyses 

at all of these concentration levels showed good precision. However, samples with a total 

uranium concentration of < 100 ng/L (~3.54 pg/L of 234U, and ~1.18 pg/L of 236U) had a 

trend of increased ratio RSD and might therefore require more volume for pre-concentration. 

Samples with uranium concentrations > 300 ng/L may be pre-diluted with 1 mL of 5% v/v 

HNO3 or less to 200 ng/L, depending on uranium concentration (Figure 3).

Conclusions

We have successfully developed a method for determining uranium isotope ratios 

of 234U/238U, 235U/238U and 236U/238U in urine using solid phase chelation extraction and a 

high sensitivity sample introduction system, coupled with a SF-ICP-MS. This approach is a 

rapid and sensitive method for analyzing uranium isotope ratios at low levels in people.

The Triple mode (SEM) method used here allows measurement of low and high ion signals 

at the same time, thereby facilitating accurate measurement of isotopic signature ratios of 

NU, DU and EU for the low abundance isotopes (e.g., 234U/238U, 235U/238U and 236U/238U) 

simultaneously in one analytical method.

A significant advantage of this method is that the volume of a urine sample loaded on the 

TRU column can be adjusted, based on the sample’s known uranium concentration, to reach 

the target uranium eluent concentration of ~ 200 ng/L. The analysis requires only 2 mL of 

urine sample that has a total uranium concentration of ~100 ng/L to ~300 ng/L.

As can be seen in Table 2, the method produced good agreement for different uranium 

isotopes with target values for the CRMs provided by the U.S. Department of Energy’s New 

Brunswick Laboratory. Except for 234U/238U of NBL115 spiked urine sample, bias was 

lower than 5.4% in all cases. The increased 234U/238U result for NBL115 urine sample 

might be caused by the uranium transferred by the difference between the spiked uranium 

concentration and the natural uranium content existed in the base urine. The very low 

abundance of 234U in the urine sample also attribute to a high bias, due to the low count 

signal.
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Although the method’s efficient uranium separation scheme effectively eliminates most 

molecular ion sources of interference, the instrument’s systematic abundance sensitivity 

error for measuring the 236U/238U isotope ratio must be mathematically corrected.

This procedure may be used for rapid and accurate identification and quantification of 

uranium isotopes in urine when people are suspected of having been exposed to depleted or 

enriched vs. environmental (natural) uranium, or for evaluating chronic environmental 

exposure or other non-occupational exposures.
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Figure 1. 
Sequential sample preparation procedure for U isotopes determination.
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Figure 2. 
Typical uranium isotopes intensity (cps) vs. concentration
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Figure 3. 
Total uranium concentration and average of ratios RSD (N=20 runs) for CRM NBLU005-A 

spiked Urine samples
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Table 1

Instrumental conditions and data acquisition settings for SF-ICP-MS measurements

RF Power (KW) 1.2 – 1.3

Cooling Gas flow (L/min) 16

Auxiliary Gas flow (L/min) 0.9

Sample Gas flow (L/min) 0.7 – 0.8

Lenses (V) Optimized as needed

Sample Take up time (min) 2.1

Wash (min) 3

Pump Speed During Wash (rpm) 1

LR Runs/Passes 3* 2500

Detection Mode Triple

Measurement Units CPS

Scan Type ESCAN

Scan Optimization Speed

Number of Pre-Scans 5

Intergration Type Average

Res. Switch Delay (s) 2

Resolution 300

Mass Window (%) 1

Setting Time (s) 0.001

Sample Time (s) 0.002

Sample Per Peak 600

Search Window (%) 1

Intergration Window (%) 1

Measured Isotopes 234U, 235U, 236U, 238U
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